Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38317796

RESUMO

Tityus serrulatus scorpion is responsible for a significant number of envenomings in Brazil, ranging from mild to severe, and in some cases, leading to fatalities. While supportive care is the primary treatment modality, moderate and severe cases require antivenom administration despite potential limitations and adverse effects. The remarkable proliferation of T. serrulatus scorpions, attributed to their biology and asexual reproduction, contributes to a high incidence of envenomation. T. serrulatus scorpion venom predominantly consists of short proteins acting as neurotoxins (α and ß), that primarily target ion channels. Nevertheless, high molecular weight compounds, including metalloproteases, serine proteases, phospholipases, and hyaluronidases, are also present in the venom. These compounds play a crucial role in envenomation, influencing the severity of symptoms and the spread of venom. This review endeavors to comprehensively understand the T. serrulatus scorpion venom by elucidating the primary high molecular weight compounds and exploring their potential contributions to envenomation. Understanding these compounds' mechanisms of action can aid in developing more effective treatments and prevention strategies, ultimately mitigating the impact of scorpion envenomation on public health in Brazil.

2.
J. venom. anim. toxins incl. trop. dis ; 30: e20230046, 2024. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1528980

RESUMO

Tityus serrulatus scorpion is responsible for a significant number of envenomings in Brazil, ranging from mild to severe, and in some cases, leading to fatalities. While supportive care is the primary treatment modality, moderate and severe cases require antivenom administration despite potential limitations and adverse effects. The remarkable proliferation of T. serrulatus scorpions, attributed to their biology and asexual reproduction, contributes to a high incidence of envenomation. T. serrulatus scorpion venom predominantly consists of short proteins acting as neurotoxins (α and ß), that primarily target ion channels. Nevertheless, high molecular weight compounds, including metalloproteases, serine proteases, phospholipases, and hyaluronidases, are also present in the venom. These compounds play a crucial role in envenomation, influencing the severity of symptoms and the spread of venom. This review endeavors to comprehensively understand the T. serrulatus scorpion venom by elucidating the primary high molecular weight compounds and exploring their potential contributions to envenomation. Understanding these compounds' mechanisms of action can aid in developing more effective treatments and prevention strategies, ultimately mitigating the impact of scorpion envenomation on public health in Brazil.


Assuntos
Animais , Venenos de Escorpião/análise , Venenos de Escorpião/química , Peptídeo Hidrolases , Fosfolipases , Glicoproteínas , Hialuronoglucosaminidase
3.
Toxins (Basel) ; 15(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37999502

RESUMO

Snakebite envenomation (SBE)-induced immunity refers to individuals who have been previously bitten by a snake and developed a protective immune response against subsequent envenomations. The notion stems from observations of individuals, including in the indigenous population, who present only mild signs and symptoms after surviving multiple SBEs. Indeed, these observations have engendered scientific interest and prompted inquiries into the potential development of a protective immunity from exposure to snake toxins. This review explores the evidence of a protective immune response developing following SBE. Studies suggest that natural exposure to snake toxins can trigger protection from the severity of SBEs, mediated by specific antibodies. However, the evaluation of the immune memory response in SBE patients remains challenging. Further research is needed to elucidate the immune response dynamics and identify potential targets for therapeutic interventions. Furthermore, the estimation of the effect of previous exposures on SBE epidemiology in hyperendemic areas, such as in the indigenous villages of the Amazon region (e.g., the Yanomami population) is a matter of debate.


Assuntos
Mordeduras de Serpentes , Toxinas Biológicas , Animais , Humanos , Mordeduras de Serpentes/tratamento farmacológico , Antivenenos/uso terapêutico , Serpentes , Toxinas Biológicas/uso terapêutico , Venenos de Serpentes/uso terapêutico
4.
Toxicon ; 217: 121-130, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998712

RESUMO

Phosphodiesterases (PDEs) constitute an enzyme group able to hydrolyze nucleic acids as well as some second messengers. Due to this ability and their expression in several human tissues and organs, PDEs can control a gamut of physiological processes. They are also involved in some pathological conditions, such as Alzheimer's disease and erectile dysfunction. PDEs are also expressed in snake venom glands, being called snake venoms phosphodiesterases, or simply svPDEs. The occurrence of these enzymes has already been reported in crotalid, elapid and viperid venoms, such as Crotalus, Naja and Trimeresurus, respectively, but not all of them have been characterized concerning their structure, activity and function. In this review, we are addressing general characteristics of svPDEs, in addition to their structural, biochemical and functional characteristics, and we also report some potential applications of svPDEs.


Assuntos
Venenos de Crotalídeos , Trimeresurus , Animais , Venenos de Crotalídeos/química , Crotalus/metabolismo , Humanos , Masculino , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/toxicidade , Venenos de Serpentes/toxicidade , Trimeresurus/metabolismo
5.
Rev Soc Bras Med Trop ; 55: e05922021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35613224

RESUMO

Over the years, vaccinations have provided significant advances in public health, because they substantially reduce the morbimortality of vaccine-preventable diseases. Nevertheless, many people are still hesitant to be vaccinated. Brazil is a region of many anti-vaccine movements, and several outbreaks of vaccine-preventable diseases, such as yellow fever and measles, have occurred in the country during the last few years. To avoid new outbreaks, immunization coverage must be high; however, this is a great challenge to achieve due to the countless anti-vaccine movements. The World Health Organization has suggested new actions for the next decade via the Immunization Agenda 2030 to control, reduce, or eradicate vaccine-preventable diseases. Nonetheless, the vaccination coverage has decreased recently. To resolve the anti-vaccine issue, it is necessary to propose a long-term approach that involves innovative education programs on immunization and critical thinking, using different communication channels, including social media. Cooperation among biology and health scientists, ethicists, human scientists, policymakers, journalists, and civil society is essential for an in-depth understanding of the social action of vaccine refusal and planning effective education measures to increase the vaccine coverage.


Assuntos
Sarampo , Doenças Preveníveis por Vacina , Vacinas , Movimento contra Vacinação , Brasil , Humanos , Programas de Imunização , Sarampo/epidemiologia , Sarampo/prevenção & controle , Vacinação
6.
Toxicon X ; 14: 100120, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35345480

RESUMO

Fungal infections are becoming a serious problem of human diseases, being one of the most important fungal pathogens the yeast of the genus Candida. So far, fungal infection treatment faces different challenges, including the limited number of therapeutic drugs. Scorpions are known to be a valuable source of biologically active molecules, especially of peptide-derived molecules with a variety of biological effects and useful, lead compounds for drugs development. Here, we pioneer described the antifungal effect of venom, mucus, and the major toxin (Rc1) from Rhopalurus crassicauda scorpion. These results support the potential for Rc1 to be further investigated as a novel antifungal therapeutic to treat Candida infections.

7.
Rev. Soc. Bras. Med. Trop ; 55: e0592, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1376338

RESUMO

ABSTRACT Over the years, vaccinations have provided significant advances in public health, because they substantially reduce the morbimortality of vaccine-preventable diseases. Nevertheless, many people are still hesitant to be vaccinated. Brazil is a region of many anti-vaccine movements, and several outbreaks of vaccine-preventable diseases, such as yellow fever and measles, have occurred in the country during the last few years. To avoid new outbreaks, immunization coverage must be high; however, this is a great challenge to achieve due to the countless anti-vaccine movements. The World Health Organization has suggested new actions for the next decade via the Immunization Agenda 2030 to control, reduce, or eradicate vaccine-preventable diseases. Nonetheless, the vaccination coverage has decreased recently. To resolve the anti-vaccine issue, it is necessary to propose a long-term approach that involves innovative education programs on immunization and critical thinking, using different communication channels, including social media. Cooperation among biology and health scientists, ethicists, human scientists, policymakers, journalists, and civil society is essential for an in-depth understanding of the social action of vaccine refusal and planning effective education measures to increase the vaccine coverage.

8.
Cytokine Growth Factor Rev ; 60: 133-143, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34090786

RESUMO

Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis, a physiological process characterized by the formation of new vessels from a preexisting endothelium. VEGF has also been implicated in pathologic states, such as neoplasias, intraocular neovascular disorders, among other conditions. VEGFs are distributed in seven different families: VEGF-A, B, C, D, and PIGF (placental growth factor), which are identified in mammals; VEGF-E, which are encountered in viruses; and VEGF-F or svVEGF (snake venom VEGF) described in snake venoms. This is the pioneer review of svVEGF family, exploring its distribution among the snake venoms, molecular structure, main functions, and potential applications.


Assuntos
Venenos de Serpentes/química , Fatores de Crescimento do Endotélio Vascular/química , Animais , Humanos , Estrutura Molecular , Fator de Crescimento Placentário
9.
Front Immunol ; 12: 778302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975866

RESUMO

The two-striped forest-pitviper (Bothrops bilineatus) is an arboreal snake that is currently represented by two subspecies (B. b. bilineatus and B. b. smaragdinus) that comprise a species complex, and its distribution is in the Amazon and the Atlantic Forest. The rarity of encounters with this snake is reflected in the low occurrence of cases of snakebites throughout its geographic distribution and the resulting low number of published clinical reports. However, in some areas, B. bilineatus proves to be more frequent and causes envenomations in a greater proportion. Herein, we review the main aspects of the species complex B. bilineatus, including its biology, ecology, taxonomy, morphology, genetic and molecular studies, geographic distribution, conservation status, venom, pathophysiology and clinical aspects, and epidemiology. In addition, the different antivenoms available for the treatment of envenomations caused by B. bilineatus are presented along with suggestions for future studies that are needed for a better understanding of the snakebites caused by this snake.


Assuntos
Bothrops , Adulto , Animais , Antivenenos/uso terapêutico , Bothrops/anatomia & histologia , Bothrops/genética , Bothrops/fisiologia , Brasil , Conservação dos Recursos Naturais , Venenos de Crotalídeos/toxicidade , Florestas , Humanos , Masculino , Mordeduras de Serpentes/epidemiologia , Mordeduras de Serpentes/terapia
10.
Front Immunol, v. 12, 778302, dez. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4087

RESUMO

The two-striped forest-pitviper (Bothrops bilineatus) is an arboreal snake that is currently represented by two subspecies (B. b. bilineatus and B. b. smaragdinus) that comprise a species complex, and its distribution is in the Amazon and the Atlantic Forest. The rarity of encounters with this snake is reflected in the low occurrence of cases of snakebites throughout its geographic distribution and the resulting low number of published clinical reports. However, in some areas, B. bilineatus proves to be more frequent and causes envenomations in a greater proportion. Herein, we review the main aspects of the species complex B. bilineatus, including its biology, ecology, taxonomy, morphology, genetic and molecular studies, geographic distribution, conservation status, venom, pathophysiology and clinical aspects, and epidemiology. In addition, the different antivenoms available for the treatment of envenomations caused by B. bilineatus are presented along with suggestions for future studies that are needed for a better understanding of the snakebites caused by this snake.

11.
Front Pharmacol ; 11: 1132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848750

RESUMO

Animal poisons and venoms are comprised of different classes of molecules displaying wide-ranging pharmacological activities. This review aims to provide an in-depth view of toxin-based compounds from terrestrial and marine organisms used as diagnostic tools, experimental molecules to validate postulated therapeutic targets, drug libraries, prototypes for the design of drugs, cosmeceuticals, and therapeutic agents. However, making these molecules applicable requires extensive preclinical trials, with some applications also demanding clinical trials, in order to validate their molecular target, mechanism of action, effective dose, potential adverse effects, as well as other fundamental parameters. Here we go through the pitfalls for a toxin-based potential therapeutic drug to become eligible for clinical trials and marketing. The manuscript also presents an overview of the current picture for several molecules from different animal venoms and poisons (such as those from amphibians, cone snails, hymenopterans, scorpions, sea anemones, snakes, spiders, tetraodontiformes, bats, and shrews) that have been used in clinical trials. Advances and perspectives on the therapeutic potential of molecules from other underexploited animals, such as caterpillars and ticks, are also reported. The challenges faced during the lengthy and costly preclinical and clinical studies and how to overcome these hindrances are also discussed for that drug candidates going to the bedside. It covers most of the drugs developed using toxins, the molecules that have failed and those that are currently in clinical trials. The article presents a detailed overview of toxins that have been used as therapeutic agents, including their discovery, formulation, dosage, indications, main adverse effects, and pregnancy and breastfeeding prescription warnings. Toxins in diagnosis, as well as cosmeceuticals and atypical therapies (bee venom and leech therapies) are also reported. The level of cumulative and detailed information provided in this review may help pharmacists, physicians, biotechnologists, pharmacologists, and scientists interested in toxinology, drug discovery, and development of toxin-based products.

12.
Sci Rep ; 10(1): 4476, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161292

RESUMO

Snake venom serine proteases (SVSPs) are complex and multifunctional enzymes, acting primarily on hemostasis. In this work, we report the hitherto unknown inhibitory effect of a SVSP, named collinein-1, isolated from the venom of Crotalus durissus collilineatus, on a cancer-relevant voltage-gated potassium channel (hEAG1). Among 12 voltage-gated ion channels tested, collinein-1 selectively inhibited hEAG1 currents, with a mechanism independent of its enzymatic activity. Corroboratively, we demonstrated that collinein-1 reduced the viability of human breast cancer cell line MCF7 (high expression of hEAG1), but does not affect the liver carcinoma and the non-tumorigenic epithelial breast cell lines (HepG2 and MCF10A, respectively), which present low expression of hEAG1. In order to obtain both functional and structural validation of this unexpected discovery, where an unusually large ligand acts as an inhibitor of an ion channel, a recombinant and catalytically inactive mutant of collinein-1 (His43Arg) was produced and found to preserve its capability to inhibit hEAG1. A molecular docking model was proposed in which Arg79 of the SVSP 99-loop interacts directly with the potassium selectivity filter of the hEAG1 channel.


Assuntos
Hemostasia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Serina Proteases/toxicidade , Venenos de Serpentes/toxicidade , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Catálise , Linhagem Celular , Desenho de Fármacos , Fenômenos Eletrofisiológicos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/química , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Bloqueadores dos Canais de Potássio/química , Canais de Potássio/química , Proteínas Recombinantes , Serina Proteases/química , Venenos de Serpentes/química , Relação Estrutura-Atividade
13.
Toxicon ; 134: 18-25, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28528178

RESUMO

Tityus serrulatus (Ts) venom is composed of a mixture of toxins presenting diverse biological functions. However, although this venom has been studied over the past three decades, omics analysis revealed that most of its toxins are not identified or their biological activities are unknown. Ts19 Frag-II is included in this group, which function is still uncertain. This study aimed to expand the biological activities of Ts19 Frag-II through in vivo investigation. Our results demonstrates that mice challenged with Ts19 Frag-II presented biochemical alterations, increasing serum levels of urea, ALT and ß-globulin, besides decreasing γ-globulins. Moreover, this toxin was also able to induce immunological alterations, increasing NO, IL-6, TNF-α and IL-17, being considered a proinflammatory toxin. The increase of IL-17 was unprecedented regarding Ts toxins and could be a result of the overall produced-effect of cells of innate immunity cells (neutrophils, monocytes, natural killers and lymphoid tissue inducers - LTis) as well as of adaptive immunity (Th17 cells). This study expanded the biological activities of Ts19 Frag-II, suggesting that this toxin could be contributing to the Ts envenoming through alterations of biochemical parameters as well as triggering the inflammatory response.


Assuntos
Interleucina-17/sangue , Peptídeos/imunologia , Peptídeos/toxicidade , Venenos de Escorpião/imunologia , Venenos de Escorpião/toxicidade , Alanina Transaminase/sangue , Animais , beta-Globulinas/análise , Imunidade Inata , Interleucina-6/sangue , Masculino , Camundongos Endogâmicos BALB C , Óxido Nítrico/sangue , Escorpiões/química , Fator de Necrose Tumoral alfa/sangue , Ureia/sangue , gama-Globulinas/análise
14.
Biochim Biophys Acta Gen Subj ; 1861(4): 824-838, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28012742

RESUMO

Snake venoms present a great diversity of pharmacologically active compounds that may be applied as research and biotechnological tools, as well as in drug development and diagnostic tests for certain diseases. The most abundant toxins have been extensively studied in the last decades and some of them have already been used for different purposes. Nevertheless, most of the minor snake venom protein classes remain poorly explored, even presenting potential application in diverse areas. The main difficulty in studying these proteins lies on the impossibility of obtaining sufficient amounts of them for a comprehensive investigation. The advent of more sensitive techniques in the last few years allowed the discovery of new venom components and the in-depth study of some already known minor proteins. This review summarizes information regarding some structural and functional aspects of low abundant snake venom proteins classes, such as growth factors, hyaluronidases, cysteine-rich secretory proteins, nucleases and nucleotidases, cobra venom factors, vespryns, protease inhibitors, antimicrobial peptides, among others. Some potential applications of these molecules are discussed herein in order to encourage researchers to explore the full venom repertoire and to discover new molecules or applications for the already known venom components.


Assuntos
Proteínas/química , Proteínas/metabolismo , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , Animais , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-27660634

RESUMO

BACKGROUND: In Brazil, accidents with venomous animals are considered a public health problem. Tityus serrulatus (Ts), popularly known as the yellow scorpion, is most frequently responsible for the severe accidents in the country. Ts envenoming can cause several signs and symptoms classified according to their clinical manifestations as mild, moderate or severe. Furthermore, the victims usually present biochemical alterations, including hyperglycemia. Nevertheless, Ts envenoming and its induced hyperglycemia were never studied or documented in a patient with diabetes mellitus (DM). Therefore, this is the first study to evaluate the glycemia during Ts envenoming using a diabetic animal model (NOD, non-obese diabetic). METHODS: Female mice (BALB/c or NOD) were challenged with a non-lethal dose of Ts venom. Blood glucose level was measured (tail blood using a glucose meter) over a 24-h period. The total glycosylated hemoglobin (HbA1c) levels were measured 30 days after Ts venom injection. Moreover, the insulin levels were analyzed at the glycemia peak. RESULTS: The results demonstrated that the envenomed NOD animals presented a significant increase of glycemia, glycosylated hemoglobin (HbA1c) and insulin levels compared to the envenomed BALB/c control group, corroborating that DM victims present great risk of developing severe envenoming. Moreover, the envenomed NOD animals presented highest risk of death and sequelae. CONCLUSIONS: This study demonstrated that the diabetic victims stung by Ts scorpion should be always considered a risk group for scorpion envenoming severity.

16.
Toxicon ; 119: 244-52, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27346450

RESUMO

The venom from the scorpion Tityus serrulatus (Ts) has been extensively studied mainly because of its rich cocktail of neurotoxins. Neurotoxins are the major and the most known components based on their modulation of voltage-gated ion channels. Until now, electrophysiological studies demonstrated that the Ts venom comprises toxins that affect Nav and Kv channels. However, although many studies have been conducted in this field, many peptides from Ts venom await further studies, including Ts8 toxin. Here we report the isolation and electrophysiological study of Ts8. The toxin Ts19 Frag-II was used as negative control. Ts8 demonstrates, among 20 tested channels, to be a selective modulator of Kv4.2 channels. Based on studies investigating the involvement of Kv4.2 on controlling nociception, we further investigated the modulation of pain by Ts8. Using intraplantar injections, Ts8 induced overt nociception (licking and lifting behaviors) and decreased the mechanical nociceptive threshold (hyperalgesia). Furthermore, the hyperalgesia was prolonged when intrathecal injections were performed. Independent of the severity, most of the victims stung by Ts scorpions report an intense and persistent pain as the major manifestation. The new role of Ts8 on nociception could explain, at least partially, this phenomenon. Additionally, our study also stresses the involvement of toxins specific to Nav channels and inflammatory mediators on the Ts painful sting. This work provides useful insights for a better understanding of the prolonged and intense pain associated with Ts envenoming for the development of specific therapies.


Assuntos
Bloqueadores dos Canais de Potássio/toxicidade , Venenos de Escorpião/química , Canais de Potássio Shal/antagonistas & inibidores , Toxinas Biológicas/toxicidade , Sequência de Aminoácidos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade/efeitos dos fármacos , Venenos de Escorpião/isolamento & purificação , Homologia de Sequência de Aminoácidos , Toxinas Biológicas/química
17.
Peptides ; 82: 44-51, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27221550

RESUMO

The present study purifies two T. serrulatus non-disulfide-bridged peptides (NDBPs), named venom peptides 7.2 (RLRSKG) and 8 (KIWRS) and details their synthesis and biological activity, comparing to the synthetic venom peptide 7.1 (RLRSKGKK), previously identified. The synthetic replicate peptides were subjected to a range of biological assays: hemolytic, antifungal, antiviral, electrophysiological, immunological and angiotensin-converting enzyme (ACE) inhibition activities. All venom peptides neither showed to be cytolytic nor demonstrated significant antifungal or antiviral activities. Interestingly, peptides were able to modulate macrophages' responses, increasing IL-6 production. The three venom peptides also demonstrated potential to inhibit ACE in the following order: 7.2>7.1>8. The ACE inhibition activity was unexpected, since peptides that display this function are usually proline-rich peptides. In attempt to understand the origin of such small peptides, we discovered that the isolated peptides 7.2 and 8 are fragments of the same molecule, named Pape peptide precursor. Furthermore, the study discusses that Pape fragments could be originated from a post-splitting mechanism resulting from metalloserrulases and other proteinases cleavage, which can be seen as a clever mechanism used by the scorpion to enlarge its repertoire of venom components. Scorpion venom remains as an interesting source of bioactive proteins and this study advances our knowledge about three NDBPs and their biological activities.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/isolamento & purificação , Peptídeos/genética , Peptidil Dipeptidase A/metabolismo , Venenos de Escorpião/química , Sequência de Aminoácidos/genética , Inibidores da Enzima Conversora de Angiotensina/química , Animais , Dissulfetos/química , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Peptidil Dipeptidase A/química , Prolina/química , Venenos de Escorpião/metabolismo , Escorpiões/química , Escorpiões/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-26957955

RESUMO

BACKGROUND: In the Atlantic forest of the North and Northeast regions of Brazil, local population often uses the fruit juice and the aqueous extract of leaves of soursop (Annona muricata L.) to treat Lachesis muta rhombeata envenomation. Envenomation is a relevant health issue in these areas, especially due to its severity and because the production and distribution of antivenom is limited in these regions. The aim of the present study was to evaluate the relevance of the use of soursop leaf extract and its juice against envenomation by Lachesis muta rhombeata. METHODS: We evaluated the biochemical, hematological and hemostatic parameters, the blood pressure, the inflammation process and the lethality induced by Lachesis muta rhombeata snake venom. We also assessed the action of the aqueous extract of leaves (AmL) and juice (AmJ) from A. muricata on the animal organism injected with L. m. rhombeata venom (LmrV) in the laboratory environment. RESULTS: LmrV induced a decrease of total protein, albumin and glucose; and increase of creatine kinase, aspartate aminotransferase, and urea concentrations. It provoked hemoconcentration followed by reduction of hematocrit, an increase in prothrombin time and partial thromboplastin time and a decrease of the blood pressure. LmrV induced the release of interleukin-6, an increase in neutrophils and changes in the serum protein profile, characteristic of the acute inflammatory process. LD50 values were similar for the groups injected with LmrV and treated or untreated with AmJ and AmL. Both treatments play a role on the maintenance of blood glucose, urea and coagulation parameters and exert a protective action against the myotoxicity. However, they seem to worsen the hypotension caused by LmrV. CONCLUSION: The treatments with AmJ and AmL present some beneficial actions, but they might intensify some effects of the venom. Therefore, additional studies on A. muricata are necessary to enable its use as natural antivenom for bushmaster snakebite.

19.
Peptides ; 80: 9-17, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26116782

RESUMO

Ts19 Fragment II (Ts19 Frag-II) was first isolated from the venom of the scorpion Tityus serrulatus (Ts). It is a protein presenting 49 amino acid residues, three disulfide bridges, Mr 5534Da and was classified as a new member of class (subfamily) 2 of the ß-KTxs, the second one described for Ts scorpion. The ß-KTx family is composed by two-domain peptides: N-terminal helical domain (NHD), with cytolytic activity, and a C-terminal CSαß domain (CCD), with Kv blocking activity. The extensive electrophysiological screening (16 Kv channels and 5 Nav channels) showed that Ts19 Frag-II presents a specific and significant blocking effect on Kv1.2 (IC50 value of 544±32nM). However, no cytolytic activity was observed with this toxin. We conclude that the absence of 9 amino acid residues from the N-terminal sequence (compared to Ts19 Frag-I) is responsible for the absence of cytolytic activity. In order to prove this hypothesis, we synthesized the peptide with these 9 amino acid residues, called Ts19 Frag-III. As expected, Ts19 Frag-III showed to be cytolytic and did not block the Kv1.2 channel. The post-translational modifications of Ts19 and its fragments (I-III) are also discussed here. A mechanism of post-translational processing (post-splitting) is suggested to explain Ts19 fragments production. In addition to the discovery of this new toxin, this report provides further evidence for the existence of several compounds in the scorpion venom contributing to the diversity of the venom arsenal.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Venenos de Escorpião/química , Animais , Eletrofisiologia/métodos , Eritrócitos/efeitos dos fármacos , Feminino , Canal de Potássio Kv1.2/antagonistas & inibidores , Camundongos , Oócitos/efeitos dos fármacos , Peptídeos/isolamento & purificação , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Processamento de Proteína Pós-Traducional , Venenos de Escorpião/isolamento & purificação , Escorpiões/química , Canais de Sódio Disparados por Voltagem/metabolismo , Xenopus laevis
20.
J. venom. anim. toxins incl. trop. dis ; 22: [1-8], 2016. ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484669

RESUMO

In Brazil, accidents with venomous animals are considered a public health problem. Tityus serrulatus (Ts), popularly known as the yellow scorpion, is most frequently responsible for the severe accidents in the country. Ts envenoming can cause several signs and symptoms classified according to their clinical manifestations as mild, moderate or severe. Furthermore, the victims usually present biochemical alterations, including hyperglycemia. Nevertheless, Ts envenoming and its induced hyperglycemia were never studied or documented in a patient with diabetes mellitus (DM). Therefore, this is the first study to evaluate the glycemia during Ts envenoming using a diabetic animal model (NOD, non-obese diabetic). Methods Female mice (BALB/c or NOD) were challenged with a non-lethal dose of Ts venom. Blood glucose level was measured (tail blood using a glucose meter) over a 24-h period. The total glycosylated hemoglobin (HbA1c) levels were measured 30 days after Ts venom injection. Moreover, the insulin levels were analyzed at the glycemia peak. Results The results demonstrated that the envenomed NOD animals presented a significant increase of glycemia, glycosylated hemoglobin (HbA1c) and insulin levels compared to the envenomed BALB/c control group, corroborating that DM victims present great risk of developing severe envenoming. Moreover, the envenomed NOD animals presented highest risk of death and sequelae. Conclusions This study demonstrated that the diabetic victims stung by Ts scorpion should be always considered a risk group for scorpion envenoming severity.


Assuntos
Animais , Ratos , Intoxicação/complicações , Intoxicação/mortalidade , Ratos/anormalidades , Escorpiões/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...